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A derivation of the fundamental equations of a nonlinear theory of thick sand- 

wich shells is given in tensor form. The shells are fabricated from alternating 

layers of different stiffness. It is considered that the hypotheses of the refined 
theory of shells of S. P. Timoshenko are valid for the hard layers, while the soft 

layers operate under transverse compression and shear. The change in metric 
during passage from one layer to another is taken into account. Diverse variants 

of the fundamental equations are presented, including equations for shells of an 
anisotropic couple-stress continual medium equivalent in an energy sense. The 
equations are linearized with respect to the membrane state for all the variants. 

The linearized equations are applied to stability problems of sandwich shells. 
The problem of the local stability of a cylindrical shell under axial compression 
is examined as an illustration. The change in the character of the buckling and 
the magnitude of the critical load is investigated as the relative stiffness of the 
layers chariges. 

A study of the mechanical properties of composite materials bonded by high- 
strength layers, and the investigation of both the integrated and local effects 
upon deformation of the laminar media can be carried out on the basis of the 

theory developed in Cl]. According to this theory, the behavior of the laminar 
media is described by a system of differential-difference equations permitting 

taking account of the discrete properties of the composite laminar medium. A 
development of this theory is given in [Z] in application to sandwich shells. The 

equations obtained in [2] by using an assumption about the smallness of the dis- 
placements and strains can be used for thick shells whose thickness is commen- 

surate with the minimum radius. The thickness of the layers of high stiffness 
should be small compared to this radius (h < R). The assumption of smallness 
of the displacements should be discarded for the large class of problems associ- 
ated with finite displacements, and nonlinear equations should be used. In deriv- 

ing the nonlinear equations the assumption about the commensurability of dis- 
placements with the thickness of the hard layers (fan - h) and about the small- 
ness of the displacements as compared with the minimal radius (rrj < R) is 
natural. Moreover, the influence of shears in the hard layers turns out to be essen- 
tial in some problems. 

Nonlinear equations of the theory of thick sandwich shells of regular construc- 
tion are derived below taking account of transverse shears in the layers of high 

striffness. As a particular case, the equations presented in [3-51, as well as the 
nonlinear equations for a single-layered shell [S], can be obtained from these 
equations. By applying the principle of continualization [7], nonlinear equations 

are obtained for anisotropic couple-stress media equivalent in an energy sense. 
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1. Fundamental hypotheaec and dependencea. Let us consider a shell 
consisting of alternate layers ofhigh stiffness of thickness h (reinforcing layers) and layers 

ofreduced stiffness of thickness S (matrix layers). For brevity,let us henceforth call them 

stiff and soft, respectively. Let us consider the layer middle surfaces to be equidistant. 
We discard the Kirchhoff-Love hypotheses in constructing the theory for the stiff lay- 

ers, and apply the hypothesis of the refined theory of shells according to which an ele- 

ment normal to the undeformed middle surface remains rectilinear after deformation, 
but not perpendicular to the deformed middle surface. 

This corresponds to the acceptance of the assumption about the uniform distribution 
of the transverse shears over the thickness of the stiff layer. Neglecting the transverse 

shears in the stiff layers results in the Kirchhoff-Love hypotheses for these layers. More- 

over, let us consider the displacements of the middle surfaces of the stiff layers vj(“) 

to be negligibly small as compared to the minimum radius of curvature of the layer and 
the scale of variation of the state of the middle surface, although still commensurate 
with the thickness of the stiff layer h. We assume the hypothesis of a linear change in 
displacement over the thickness for the soft layers. 

Let us refer the laminar shell to an orthogonal x1, z’, x3 coordinate system such 
that the middle surfaces of the stiff layers are the coordinates x3 = const. The surfaces 
P = const (a = 1,x) are orthogonal to these surfaces. Moreover, let us introduce 
local coordinate systems for each layer as a consequence of the parallel transfer of the 
mentioned system along d. 

We obtain an expression for the displacements by starting from the assumption about 
a uniform distribution of the transverse shears along the thickness of the stiff layer. As 

a result of integration and the linearization admissible in connectionwith the hypotheses 
assumed, we obtain the following expressions for the displacement components in the 

stiff layers : 
(1.1) 

Here u,(“), v,(k) are covariant components of the middle surface displacement vector 

of the k th stiff layer, bCh“E are mixed components of the curvature tensor, gB(k) are 
components of the surface vector of the slopes of the normals. In the case of the valid- 
ity of the Kirchhoff-Love hypotheses 

(1.2) 

should be introduced in (1.1) in place of &$k) for the strain of the stiff layers (the as- 
sumption is valid for the higher degree of flexibility of the soft layers), where V,,@) is 
the symbol of covariant differentiation on the middle surface of the k th stiff layer. 

We find the strain components of the stiff layers by means of the formula 

As usual, the Greek subscripts take on the values 1, 2 and the Latin subscripts 1, 2. 3. 
Here 0” (k) in (1.3) is the symbol of covariant differentiation in the space surrounding 

the mid&e surface of the kth stiff layer. Using (1.1) and the rules of tensor calculus, 
we find that the strain components are 

(1.4) 
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to the accuracy of linear terms in the normal coordinate ztk) , where the strain tensor 
components of the middle surface e,(i) and the change in the curvature x$’ are deter- 
mined by the expressions 

&$ = P$) + i/a$W~$~ + ij2(p~)‘p~) 

%o;) _ iiz (O’“‘EM + @O&W _ b’h”;$$ _ b’“‘;;‘+e;“?, 
1, 61 L 

Here v,(“) is determined in conformity with (1.2), the quantities $$’ are 
components of the antisymmetric tensor of the rotation around the normal ~,. ~ 

(1.5) 

the sum of 

Cl’,“,’ and the 
surface tensor ex:’ describing the linear part of the tangential strains of the middle 
surface 

I#$ = Ok:,) + ei(,h-) 

Nonlinear terms of the type 

which are higher order infinitesimals are omitted in the expression for x$’ . Retention 
of these terms would result in the need to retain square terms in z@) in (1.4) and some 

nonlinear terms in (1. l), which would not correspond to the assumptions accepted herein. 
Such a constraint on the nonlinear terms is customary for the nonlinear theory of single- 
layer shells [S]. The transverse shear strain components in the stiff layers are the follow- 
ing within the scope of the hypotheses assumed: 

By passing to the examination of soft layers in conformity with the hypothesis about 
a linear change in displacements along the thickness of the soft layer, we obtain 

Inserting (1.1) into (1. 8) by means of formulas analogous to (1.3). we evaluate the essen- 
tial strain tensor components of the soft layers. By estimating the order of the terms in 

the expression obtained and by omitting higher order terms, we arrive at relationships 
for the average shear and transverse strain components in the soft layers 

(1.9) 

If the Kirchhoff-Love hypotheses are valid for the stiff layers, then expressions agreeing 
with an analogous expression in [2] are obtained instead of (1.9) 

,[kl _ I, s-i @“l (WW+i) + W(k)) + @,Lk +l) _ VLk’) _ 
a3- 2 a (1.10) 

2p.3 (up) + zp)] (2c = h + s) 
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The stresses in the stiff and soft layers are computed in conformity with Hooke’s law. 
Formulas for the plane state of stress 

#Oa3 * aPt8 
==h 

.(W 
‘USI 

a(k)13 = 2&k)a@&) 
(1.41) 

$kb3 _ - z~~~~rk~~~~~l 
9 

,I k133 
= &&I 

hence hold for the soft layers. Here h’*:iys are the covariant components of the elastic 

constants tensor of the plane state of stress of a stiff layer, G is the shear modulus of 
the stiff layer material, E, and G, are the transversal modulus and shear modulus 

of the soft layers, a(k and aIkI@ are contravariant components of the middle-surface 
metric tensor of the k th stiff and soft layers. let us note that (1.11) includes the cases 

of both isotropic and anisotropic stiff layers. 

2. ~quAti~n8 of nonlinerr sandwich shell theory, Let us use the 
Lagrange variational principle to derive the fundamental equations. It is hence necessary 

to obtain an expression for the strain potential energy of a laminar shell and an expres- 
sion for the potential of the applied forces. Introducing the energy stress resultants and 
moments associated with the stresses referred to the middle surfaces by the formulas 

let us write the exnression for the potential strain energy 

u’ = j: Utk) r_: f -$ \( (N(k)ap,$j + M(k)a$&z + S(k)a&)) dQ,k, (2.2) 
k=l k-l 6(k) 

The potential strain energy of the soft layers is defoned as follows: 

Q Ih‘lz = _ 1/2S5w~3, jJTth-1 = s3rk333 

Here QIkll, NIkI have the meaning of transverse forces due to taking account of the 

shears, and tensile forces associated with the transverse strain of a soft layer. In calculat- 
ing the potential of the applied forces, let us consider, without limiting the generality, 

that the applied forces and moments act on the stiff layers 

(2.4) 

Let us introduce the customary stress resultants and moments, in addition to the energe- 
tically derived stress resultants and moments introduced above. Their interrelation is 

@'en by ~(@a@ = N(k)@ + l,~~(~)~M(~)~~ _ ~,~~(~)~M(~)av + N(k)aYZ1:$k)P 

M(k)@ = M(kfQB 
7 

c$k)J _ S(kb (2.5) 
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Let us note that if a simpler expression is taken in place of (1.5) for the curvature 

C$s(;: = @‘), in conformity with the approximation in [6] for a single-layer shell, then 

we must take 

instead of the first equality in (2.5). The energy and customary stress r&ultants agree 
in case the hypotheses corresponding to shallow shells are valid. 

Application of the Lagrange principle with (2.2) - (2.4) and the notation (2.5) used, 
results in the fundamental finite-difference-differential equations for sandwich shells 

9$_ @“I”, (t;Q[kl*@ + ~~*Q[k-ll**~) + Qf?h.) = (f (2.7) 

@,‘N’k’“P _ v$“‘(N’“‘++$‘) _ v;WJ’@” + VfO (t;Qlkl*r 4_ t~~Q[k-l]**z) _ 

s-1 (@v[k] - t;*fvk-l’) - qFk, = 0 

$k’~~‘k’“” + &k)a + I/~& (t;Qlkl*a _ t;*Q[k-l]""5) = o 

Here 

th-** zzz tn* = tl** = 0 

Qtk’*a’= (if; - ~b[~]$) QLkIfi, Q[k-I]**2 = (6; + &k-l];) Q[k-l]$ 
(2.8) 

The last relations result from the general rules for transformation of surface tensors. 
The natural boundary conditions are also furnished by the variational principle. For 

example, for the edge S? = const they are 

If the transverse shears in the stiff layers are negligible, then the components EiLck) 
must be replaced in all the expressions starting with (1.1) and up to (2.4) in conformity 
with (1.2) and we must set &‘ck) = 0 in the expression for the potential energy u’ of 

the stiff layers, Application of the Lagrange principle results in the following equations: 

and the natural boundary conditions (z’ = eon.&) 
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+ t;"~[k-ll*rkl) _t @)j@k)lp _ j@+#) + 
(2.li) 

The quantities with the asterisks in these equations and boundary conditions are defined 

according to (2.8), as before, 
Let us consider a further simplification of (2.7), (2.10). If the thickness of the whole 

shell H is small compared to the characteristic radius, then the shell can be considered 

thin, and the change in the metric can be neglected. In this case, we set 

in (2.7), (2.10) and in the appropriate boundary conditions. In~~u~tion of hypotheses 
corresponding to shallow shells gives an essential SimFlifi~ation in the equations. In this 
case the nonlinear terms containing $ap in (1.5) should be neglected, and cpa should 
be replaced by V,w in the remaining nonlinear terms. Moreover, terms containing b,P 
should be neglected in the expressions for the tensor components of the change in cur- 

vature. As an illustration, let us present the form of (2.10) for shallow shells 

v&h’)+ i_ s-l (?knQikla I_ “rlklQ[k-““) + &k, = 0 

b~~~r{k~a~ -f- ~~Q~~~(k~a~ + CS-~ (~~*Qt~‘~ -k rikl Q~lr+ll'f - (5.12) 

@(qkn'l'['l - q*Jpl') - V,(N (k%qjw) - dk) :z 0 

In this case the stress resultants and moments agree with the energetically derived stres- 
ses and moments and are defined according to (2, I). Neglecting the tangential inertia 
forces is natural in analyzing dynamics problems for the case presented. Further sim- 
plifications are obtained when neglecting deformations of the normals in the soft layers 
and inu~u~ing the total stress resultant functions. ‘Ibe equations of [4] can hence be 

obtained from (2.7). 

3, Phrrrge to I, continuum aouplr-atrr#r rnfrotropic medium. 
When the number of layers is sufficiently high, replacement of the discrete laminar 

medium by a continuum, anisotropic, couple-stress medium is possible. Following [7], 
let us perform the operation of continualization for the cases examined above. 

Let us first examine the case when the Kirchhoff-Love hypotheses are valid for the 
stiff Iayers. We have for the strain tensor components (a, p = 1,2) 

eila = lj% (Vav,s + Q,v, + Qav”Qpu, +- Qaqwf (3.1) 

Here and throughout Sect, 3 V, denotes covariant differentiation in the space surround- 
ing the coordinate surface x3 = 0. The metric tensor components for this space are 
g,, = 1, g,, = 0, so that the three-index Christoffel symbols containing the index 3 
twice and more equal zero: G& = Gs = GE, = 0. sir 

On the basis of (1.2) and (1.5), the tensor components characterizing the curvature 
of an element of a couple-stress medium are: 

lctiB f;l V,C~W - t~~v, (G;& - ‘IzQfi (Gh4 (3.2) 
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The transverse shears and strains are defined as follows : 

F 'a3 -= a(1 t ,+) (Vaw + V3ua - @3q), ?33 = &, v,w (3.3) 

where II, = h / 2c has the meaning of a reinforcing coefficient. The stress and moment 

components are determined by the formulas 

6 4 = $py~eyS, (3.4) 
033 = &,F33, v3 = 2G,(1 - q$gahp3 

Performing the fundamental operation of energy continualization, the replacement of 
the sum in the potential energy expression by an integral, we obtain 

U = +-- SQ (5”ge,lp + p%~~a + 2sa3za3 + 533~33) 07 
v 

Application of the Lagrange principle results in the equations (4” and @ are mass 

force components) 

V@ - VP(G;3#y)+ VB(syBVyu") -&- Gi3zp3 -+ V33a3 + 4” = 0 

V,V,u”P - + V3rj33)- Vp(5WaW)- 43 = 0 (3.5) 

The equations obtained differ from the ordinary equations of couple-stress elasticity 

theory [8] because of the structural anlsotropy of the medium relative to the couple 

stresses. 
Normal stresses trlpo and shear stresses 03so , as well as the moments maa can be 

given on the faces za = const . Only the normal ~7~~” 

53x 
“) can be assigned on the face x: d= 

and shear stresses ~19~’ (ca30+ 
const. 

The natural conditions for the edge x1 = const are 

l/g [P - pzlG,,” + ~ylVyv"] = (3,; - G23amz1) l/& 

l/iyfl= v/gde l/g [L,,- Vpppl - -$+(I/gpel) + 
l---Q 

(3.6) 

For the edge x3 = const we have 

1 

l--9 
sas = sa30, 

1 
- 533 = 

l--4 
6 
33O (3.7) 

Now, let us turn to the case of rejection of the Kirchhoff-Love hypotheses for the stiff 

layers of a multilayered medium. upon passing to the continuous medium it is neces- 
sary to introduce an additional field of local rotations characterized by the components 

E,. It is necessary to take 

XWJ = l/s [V&s + V,& - V, (G;3vy) - VP (G,Y,u,)I (3.8) 

instead of (3.2) for the curvature tensor components of the elements of the medium. 
The expression for the potential energy is converted into 

sss [5aBe4 + p%p + 23a3Fa3 + 333C33 + s"(v,W - g&w (X.9) 

V 
S" = $G(V,w- En) 
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Here S” are the additional shears in the equivalent medium due to the shears in the 
stiff layers of a discrete laminar medium. We find from the Lagrange principle 

The conditions for the edge a? = const retain the form (3.7). 

4, Linsrtlsrtion of the equrtionr, The simplest case of linearization 
of the equations obtained will hold if the initial state of the shell is undeformed. To 
linearize (2.7), (2. lo), (3.5) and (3‘10) and the appropriate boundary conditions, it is 
sufficient to omit the nonlinear terms. Hence, (2.10) go over into the equations in [2]. 

Linearization with respect to the membrane state in the shell is of interest. The equa- 
tions obtained are hence the initial equations in an investigation of the stability of sand- 

wich shells. Let us show how the linearization is carried out in this case by using (2.10) 
as an example, and let us then present the linearized equations for other cases. 

The equations 
~~‘N’h““@ + N(~)~~~(~)~~~) ~+ & -L 0 (4.1) 

~~~)~~(~~a~ _ s-1 &“Mh” - t, **~Ek-lI) _ @ (N(~~~~~~~)) _ &I = 0 

correspond to the membrane state in a sandwich shell. Let the solution of this system be 

Let us seek the solution of (2.10) as the sum of two members, one of which is (4.2) and 
the other corresponds to a deviation from the initial membrane state 

Let us substitute (4.3) into (2.10) and let us linearize relative to the deviations taking 
into account that (4.2) is a solution of (4.1). Upon linearizing, we shall consider, as is 
customary in the theory of shell stability, that terms of the ty$ N’,k’@ cp$) can be 
neglected in comparison with the terms F(k’fa’3 cp$. In place of the stress resultants 
N@)@ the following should be inserted into (2.10) 

&h-)x!3 = $k’“” + ,y&k’“” + ~(k)~yq(*k’)z (4.4) 

After linearizing, we arrive at the system of equations (we omit the symbol l of the 
deviation from the membrane state) 
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vp~‘“‘“” _ pbv~~)&ph ; (t;Qlkl*a _ r;*Q[k-ll**~) _ I 

+[kl; (&$“I* P + t:*@k-U”“P ) + V, (F’k’“Yl$k’~)+ J,(k)~Q(k+&k) + &j, = () 

Q$Qv’k’“P + v;k’@k’~‘k’aP + VP’ [+ (t;Q[k’*a + t;*Qrk-“**.)] - (4.5) 

$ (t;~[“l _ t;*NW ) _ vLk’ (j~‘“‘~$b’C’) + @$Wy,$Oy _ gk, = 0 

Here q&j and q&j are understood to be additional stress resultants. The quantities in 

(4.5) are calculated in conformity with the linear relations (1.5). The boundary condi- 
tions are also transformed in an analogous manner. The linearized modification for 

(2.7) relative to the membrane state is 

(4.6) 
$(t:Q[kl*._t:*Q[k-ll**a~ h ;2, b[kl;: (r;Q[k]*a+ $*@k-rJ**fi) + q;;i, = 0 

@&(k)ab _ vp’ (~‘k’++$‘) + ~~~,:,‘F’k’“y,~k’~ _ 

vik’#kP + v~k’@@kl*” + t;*~I~-~l**~) _+(t$@” _ t;*@l’) _ q;k, 10 

V6h”M’k’“P + S(k)a + $ p;Q[kl*a _ t;*Q[k-ll**a) = 0 

To obtain the linearized modifications of (3.5) and (3.10) it is sufficient to replace 
uafi by Fub in the nonlinear terms and to consider the oGB left in the equations to be 

evaluated by using the linear expressions (3.1). 

6. Applfcrtion of the lfnarrised equation, to stability prob- 
lem8. As an illustration, let us consider the problem of the stability of a cylindrical 
sandwich shell subjected to longitudinal stress resultants. Let us limit ourselves to the 

case when the Kirchhoff-Love hypotheses are valid for stiff layers of radius Rat0 which 
the stress resultants N are applied. 

The equations (4.6) linearized relative to the membrane state, written in physical 
variables become for this case 

yr, 2 + x [(Lb,+1 - u,) (I + r,) qan - (G - ua-l) (I - r~) Q1l + 

x N aw, as+1 -+~)(~+rR)ll.n-(~+~)(l-rr,)~Rl] -0 ax 

a% a% 
,TRB ““;-+!_$T__..&++r,L 

w ax dc& + rR2 $y- + x I(%+1 - 4(l + rJx 

%a - (UR - h-1) (1 - r.,) kl + x [(r, $$ + r,+l 2) (1 + r,) qal, - 

( awR-l 
r-1 acp - + r, 2) (1 - rR)qul] = 0 (5.1) 
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d ( ffZ& + 2ra2 & t- ra4 2) + rz2w, f rz2 - F[ + v, t$ - 

e [(ub+~ - WE) (1 + rd rlan - (wz - w&(1 - ra)rlll - 

The following dimensionless quantities are introduced here (the corresponding dimen- 

sional quantities are marked with an asterisk) : 

U, = vr'* /c, V, = vg)* /c, W, = w'~'*,/ C, x = x1* ic, up Y z("'* /R, 

ra=+, 
a 

9 x= 
G,“? (1 - 9) 

Ehs 

N = N*(l - Y2) 
Eh 

The introduction of parametric terms in (5.1) is consistent with the accuracy of the 
hypotheses used, which correspond to the Donnell-Mushtari-Vlasov equations for a single- 
layered shell. 

Let us consider the local buckling modes. We seek the solution of (5.1) in the form 

w, = Wainkxcosmrg, v, = V,sinlcxsin mcp, U, = U,coskxcos rnv (5 4 

Substitution of (5.2) into (5.1) and introducing the n-dimensional vectors uj (i = 1, 
2, 3) with the components U,, V, and W, (a = 1, 2, 3, . . . . n) results in a homo- 

geneous ‘ystem Of equations Aijuj _ NBisn,& = 0 (5.3) 

Because they are complicated, the expressions for the matrices Aij and B,, are not 
presented here. Let us just note that the matrices Aij are tridiagonal, and the matrix 
I&s is a diagonal matrix. Eliminating ur and ua from (5.3). we obtain 

(A - NB,,) us = 0, A = As3 + &Au + A&, 

A, = (A,, - A,2A&1A,J1 (A,,&,-rA,, - A,,) 

A, = (A22 - A,,A,,-lA,,)-l (A,,Al,‘lAl, - A,,) 

Therefore, the bifurcation values of the stress resultants corresponding to the wave num- 
bers k and m agree with the eigenvalues of the matrix Bss-IA. Different eigenvalues 
for the same h- and m correspond to different buckling modes in the transverse direction. 
Minimization of the values found in the wave numbers k and m yields a critical value 

of the stress resultant and the corresponding buckling mode. 
Values of the bifurcation loads for cylindrical shells with a different number of layers, 

a different ratio of the moduli f = E / E, were found on the BESM-4 electronic com- 
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puter. The remaining parameters were assumed to be the following : h / c = 1, r, = 10, 

v = 0.3, E, i C, = 2.7. Presented in Fig. 1 are results for shells having four stiff layers 
(n = 4). The solid lines show the least values of Nkrn for different m, while the dashes 
show higher values for m = 0. It turns out for this case that the critical dimensionless 

load N, = 0,0599, and that the correspond- 

~~ ing buckling mode is axisymmetric: me = 

0. The buckling mode in the longitudinal 

L%?? direction is characterized by the dimension- 
less wave number k+ = 0.5. The displace- 
ments are distributed over the thickness in 
such a manner that they diminish with dis- 
tance from the outer surface of the shell, 

DC95 i. e. primarily surface buckling occurs. For 

ff &?3- rz50 1275 LclD k shells with a large number of layers and the 
same parameters, the surface nature of the 

Fig. 1 buckling becomes more explicit. The value 
of the critical load for a single-layered shell 

with the dimensions of the external layer are superposed by the dash-dot line in Fig.1. 

The character of the buckling mode depends essentially on the stiffness of the soft 
layers. If the stiffness is quite low, then the buckling mode is similar to the buckling 

mode of a single-layered shell under axial compression. In practice, only the outer lay- 
er hence buckles. As the stiffness of the soft layers increases, the character of the buck- 
ling changes and in some range of variation of the stiffness the axisymmetric buckling 
mode corresponds to the mi~mum, load. The outer layer hence behaves almost as a 

shell on an elastic foundation of Winkler type. This is seen from a comparison with the 
analysis of the expression for the bifurcation values of the load for a single-layeredshell 
on a Winkler foundation 

ka 
N,, = 

d (Il.2 + r%l‘y 4e 
h.2 -t- (1 - v2) r?’ (ii2 + r2T)L2)2 + k2 

A further increase in the stiffness of the soft layers results in the axisymmetric buckling 

mode corresponds to the critical load. 

Fig. 2 

The change in the buckling mode is shown in Fig. 2 a and b in the example of a shell 

with ten stiff layers (n = lo). Figure 2 a has been constructed for f = 106, Fig. 2 b for 
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f = 10” , and Fig. 2 c for f = lo”. The curves represented in Fig. 2 a are characteristic 
for a single-layered shell, and in Fig. 2 b and c for shells on an elastic basis. AS the 

stiffness of the soft layers increases, the surface character of the buckling is spoiled more 

and more. The mode corresponding to the critical load is hence axisymmetric. 
A further increase in the stiffness of the soft layers results in a new change in the cha- 

racrer of the buckling. For a comparable stiffness of the “stiff” and “soft” layers, the 
shell starts to behave as a monolith, and the dependences of the bifurcation values of the 
loads have a form analogous to that presented in Fig. 2 a ; the buckling mode is again 

not axisymmetric. 
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A large amount of literature (for example, see the surveys in [l, 21) has been 
devoted to the motion of a heavy rigid body around a fixed point. The present 
paper is based on a simple concept, permitting us to use the methods of invest- 
igating systems with nonlinearly connected oscillators [3-51 for the study of a 
specific Hamiltonian system with three degrees of freedom, namely, a rigid body 

moving around a fixed point. This concept is that when no constraints are im- 
posed on the initial conditions, excluding small motions near the equilibrium 
position (and such motions are all the general cases of integrability: Euler-Poinsot, 


